Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Am Soc Nephrol ; 32(11): 2958-2969, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526711

ABSTRACT

BACKGROUND: The long-term outcome of COVID-19-associated collapsing glomerulopathy is unknown. METHODS: We retrospectively identified 76 native kidney biopsies from patients with history of COVID-19 between March 2020 and April 2021. Presenting and outcome data were obtained for all 23 patients with collapsing glomerulopathy and for seven patients with noncollapsing podocytopathies. We performed APOL1 genotyping by Sanger sequencing, immunostaining for spike and nucleocapsid proteins, and in situ hybridization for SARS-CoV-2. RESULTS: The 23 patients with COVID-19-associated collapsing glomerulopathy were median age 57 years (range, 35-72), included 16 men, and were predominantly (91%) Black. Severity of COVID-19 was mild or moderate in most (77%) patients. All but one patient presented with AKI, 17 had nephrotic-range proteinuria, and six had nephrotic syndrome. Fourteen (61%) patients required dialysis at presentation. Among 17 patients genotyped, 16 (94%) were high-risk APOL1. Among 22 (96%) patients with median follow-up at 155 days (range, 30-412), 11 (50%) received treatment for COVID-19, and eight (36%) received glucocorticoid therapy for podocytopathy. At follow-up, 19 (86%) patients were alive, and 15 (68%) were dialysis free, including seven of 14 who initially required dialysis. The dialysis-free patients included 64% (seven of 11) of those treated for COVID-19 and 75% (six of eight) of those treated with glucocorticoids for podocytopathy. Overall, 36% achieved partial remission of proteinuria, 32% had no remission, and 32% reached combined end points of ESKD or death. Viral infection of the kidney was not detected. CONCLUSIONS: Half of 14 patients with COVID-19-associated collapsing glomerulopathy requiring dialysis achieved dialysis independence, but the long-term prognosis of residual proteinuric CKD remains guarded, indicating a need for more effective therapy.


Subject(s)
COVID-19/complications , Kidney Glomerulus/pathology , Podocytes/pathology , Renal Insufficiency/pathology , Renal Insufficiency/virology , Adult , Aged , COVID-19/pathology , COVID-19/therapy , Female , Humans , Male , Middle Aged , Recovery of Function , Renal Dialysis , Renal Insufficiency/therapy , Retrospective Studies , Treatment Outcome
2.
J Am Soc Nephrol ; 2021 Feb 17.
Article in English | MEDLINE | ID: covidwho-1496670

ABSTRACT

BACKGROUND: Vesicoureteral reflux (VUR) is a common, familial genitourinary disorder, and a major cause of pediatric urinary tract infection (UTI) and kidney failure. The genetic basis of VUR is not well understood. METHODS: A diagnostic analysis sought rare, pathogenic copy number variant (CNV) disorders among 1737 patients with VUR. A GWAS was performed in 1395 patients and 5366 controls, of European ancestry. RESULTS: Altogether, 3% of VUR patients harbored an undiagnosed rare CNV disorder, such as the 1q21.1, 16p11.2, 22q11.21, and triple X syndromes ((OR, 3.12; 95% CI, 2.10 to 4.54; P=6.35×10-8) The GWAS identified three study-wide significant and five suggestive loci with large effects (ORs, 1.41-6.9), containing canonical developmental genes expressed in the developing urinary tract (WDPCP, OTX1, BMP5, VANGL1, and WNT5A). In particular, 3.3% of VUR patients were homozygous for an intronic variant in WDPCP (rs13013890; OR, 3.65; 95% CI, 2.39 to 5.56; P=1.86×10-9). This locus was associated with multiple genitourinary phenotypes in the UK Biobank and eMERGE studies. Analysis of Wnt5a mutant mice confirmed the role of Wnt5a signaling in bladder and ureteric morphogenesis. CONCLUSIONS: These data demonstrate the genetic heterogeneity of VUR. Altogether, 6% of patients with VUR harbored a rare CNV or a common variant genotype conferring an OR >3. Identification of these genetic risk factors has multiple implications for clinical care and for analysis of outcomes in VUR.

3.
J Am Soc Nephrol ; 31(9): 1959-1968, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-652873

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is thought to cause kidney injury by a variety of mechanisms. To date, pathologic analyses have been limited to patient reports and autopsy series. METHODS: We evaluated biopsy samples of native and allograft kidneys from patients with COVID-19 at a single center in New York City between March and June of 2020. We also used immunohistochemistry, in situ hybridization, and electron microscopy to examine this tissue for presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The study group included 17 patients with COVID-19 (12 men, 12 black; median age of 54 years). Sixteen patients had comorbidities, including hypertension, obesity, diabetes, malignancy, or a kidney or heart allograft. Nine patients developed COVID-19 pneumonia. Fifteen patients (88%) presented with AKI; nine had nephrotic-range proteinuria. Among 14 patients with a native kidney biopsy, 5 were diagnosed with collapsing glomerulopathy, 1 was diagnosed with minimal change disease, 2 were diagnosed with membranous glomerulopathy, 1 was diagnosed with crescentic transformation of lupus nephritis, 1 was diagnosed with anti-GBM nephritis, and 4 were diagnosed with isolated acute tubular injury. The three allograft specimens showed grade 2A acute T cell-mediated rejection, cortical infarction, or acute tubular injury. Genotyping of three patients with collapsing glomerulopathy and the patient with minimal change disease revealed that all four patients had APOL1 high-risk gene variants. We found no definitive evidence of SARS-CoV-2 in kidney cells. Biopsy diagnosis informed treatment and prognosis in all patients. CONCLUSIONS: Patients with COVID-19 develop a wide spectrum of glomerular and tubular diseases. Our findings provide evidence against direct viral infection of the kidneys as the major pathomechanism for COVID-19-related kidney injury and implicate cytokine-mediated effects and heightened adaptive immune responses.


Subject(s)
Betacoronavirus , Coronavirus Infections/pathology , Kidney/pathology , Pneumonia, Viral/pathology , Adult , Aged , Betacoronavirus/isolation & purification , Biopsy , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/immunology , Female , Humans , Kidney/ultrastructure , Kidney/virology , Kidney Diseases/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL